Skip to content

Models (v2 and v3)

These was the steps of the model-v2 using Logistic Regression, I also used feature engineering and numerical and categorical transformations.

On the logistic regression was applied the class_weight parameter, with the following values:

  • class_weight: "balanced" and {0: 0.10, 1: 0.90}

Those models are 21_01_22_lr_w_v1.sav for dict-like params, and 21_01_22_lr_w_v2.sav

Pipeline

graph TD A[Transformed Data: second-eda-output.csv] --> B[Type conversion]; B[Type conversion] --> C[Train Test Split]; C[Train Test Split] --> D[One Hot Encoder on all categorical variables]; D[One Hot Encoder] --> E[Fit Logistic Regression]; E[Fit Logistic Regression] -.-> F{tune class_weight}:::tune; F{Tune class_weight} -.-> G[Predict]; G[Predict] --> H[Calculate Metrics]; classDef tune fill:#f96;

Confusion Matrix

V2

confusion-matrix

V3

confusion-matrix