Skip to content

Model v4

These was the steps of the model-v4 using Random Forest, I also used feature engineering and numerical and categorical transformations.

The model is 21_01_22_lr_w_v3.sav, and can be found on the respective directory.

Pipeline

graph TD A[Transformed Data: second-eda-output.csv] --> B[Type conversion]; B[Type conversion] --> C[Train Test Split]; C[Train Test Split] --> D[One Hot Encoder on all categorical variables]; D[One Hot Encoder] --> E[Fit Random Forest]; E --> G[Predict]; G[Predict] --> H[Calculate Metrics]; classDef tune fill:#f96;

Confusion Matrix

confusion-matrix

Feature Importance

feat-importance